The poster is showing the results of laboratory analyses carried out on pottery of the Early Dynastic Period recovered from excavations at Tell Arbid in northeastern Syria. Work was conducted at this site by the Polish Mission of Mediterranean Archaeology, led by professor Piotr Bielinski. The material chosen by archaeologists for analysis includes samples of various categories of wares: 22 fragments each of Fine ware, kitchenware and Metallic ware, and one fragment of a tannur. Laboratory studies were undertaken to ascertain the differences/ similarities in the body composition and in the manufacturing techniques of these wares. # **Pottery from Tell Arbid** -provenance and technological studies Malgorzata Daszkiewicz ARCHEA, Warsaw, Poland Anna Smogorzewska Institute of Archaeology, University of Warsaw, Poland Ewa Bobryk Warsaw University of Technology Poland METHODS: Chemical analysis by WD-XRF Thin-sections microscopy MGR- analysis Water permeability Thermal shock resistance ## local production | OC AL PRO | (62 0.70 carry clay (62 0.70 carry clay (63 0.70 carry clay carry clay carry clay carry clay (64 0.86 0.82 0.88 0.80 0.83 0.88 0.88 0.88 0.88 0.88 | 10,70
10,70
suppored
9,85
11,62
10,85
out inter
14,03
13,97
12,03
13,91
13,20 | 5,40
with ca
4,90
5,45
tional 1
6,76
6,06
6,72
6,64
tional 1 | 0,101
dobe)
0,025
0,117
0,065
tem ped;
0,123
0,118
0,114
0,124
Sonal teri | 2,77
6,19
2,58
5,79
4,84
5,12
5,27
4,64
mp46 | 32,18
42,98
27,30
33,37
18,98
19,37
20,83
18,66 | 0,50
0,62
0,60
0,66
0,65
0,65
0,67
1,02
0,79 | 2,43
2,66
2,36
2,33
2,45
2,86
1,85 | 0,19
0,23
0,18
0,24
0,32
0,20 | 118
101
109
153
131
134 | 205
279 | | | 53
35
45
44
70
65 | 420
232
314
234
665
413 | 20
27
28
27 | 116
160
152
188 | 219
400
460 | 31
30
19
25 | 60
31
92
64
74 | %
22,32
24,65
21,54
23,19 | 2,02
1,84
1,70 | -
21,9
38,2
28,0 | | |--|---|--|--|---|--|--|--|--|--|--|---------------------------------|-------------------------------|----------------------------|----------------------------------|--|----------------------|--------------------------|--------------------------|----------------------|----------------------------|---------------------------------------|----------------------|---------------------------|---| | Wall of tax nor | (62 0.70 carry clay (62 0.70 carry clay (63 0.70 carry clay (63 0.70 carry clay (63 0.70 carry clay (63 0.82 0.82 0.82 0.82 0.82 0.82 0.82 0.82 | 10,70
respected
9,85
11,62
10,85
04,63
13,97
12,03
13,91
13,00
y without
13,00
13,90 | 5,40
with ca
4,90
5,89
5,45
clored t
6,76
6,00
6,72
6,64
tistant
6,84 | 0,101
dobs)
0,075
0,117
0,085
tem ped;
0,123
0,118
0,114
0,124
tonal ter
0,114 | 2,77
6,19
2,58
5,79
4,84
5,12
5,27
4,64
mp46 | 42,98
27,30
23,37
18,98
19,37
20,83
18,06 | 0,62
0,60
0,66
0,65
0,67
1,02 | 2,43
2,66
2,36
2,33
2,45
2,86
1,85 | 0,19
0,23
0,18
0,24
0,32
0,20 | 101
100
100
153
131
134 | 205
279
264
288
272 | 72
103
93
132
124 | 62
74
71
50
66 | 25
45
44
70
65 | 232
314
234
665 | 20
27
28
27 | 116
160
152
188 | 219
400
460
375 | 30
19
25 | 31
92
64 | 26,65
21,14
23,19 | 5,84 | 38,2 | 1 | | Wall of tax nor | (62 0.70 carry clay (62 0.70 carry clay (63 0.70 carry clay (63 0.70 carry clay (63 0.70 carry clay (63 0.82 0.82 0.82 0.82 0.82 0.82 0.82 0.82 | 10,70
respected
9,85
11,62
10,85
04,63
13,97
12,03
13,91
13,00
y without
13,00
13,90 | 5,40
with ca
4,90
5,89
5,45
clored t
6,76
6,00
6,72
6,64
tistant
6,84 | 0,101
dobs)
0,075
0,117
0,085
tem ped;
0,123
0,118
0,114
0,124
tonal ter
0,114 | 2,77
6,19
2,58
5,79
4,84
5,12
5,27
4,64
mp46 | 42,98
27,30
23,37
18,98
19,37
20,83
18,06 | 0,62
0,60
0,66
0,65
0,67
1,02 | 2,43
2,66
2,36
2,33
2,45
2,86
1,85 | 0,19
0,23
0,18
0,24
0,32
0,20 | 101
100
100
153
131
134 | 205
279
264
288
272 | 72
103
93
132
124 | 62
74
71
50
66 | 25
45
44
70
65 | 232
314
234
665 | 20
27
28
27 | 116
160
152
188 | 219
400
460
375 | 30
19
25 | 31
92
64 | 26,65
21,14
23,19 | 5,84 | 38,2 | 1 | | Citchenuare (m. MD 2005 54.) MID 2005 54.) MID 2006 64.) MID 2007 42.) MID 2007 62.) MID 2007 55.) MID 2008 55.) MID 2008 69.) 69. | 277 0.59 261 0.70 262 0.70 263 0.70 264 0.86 265 0.82 266 0.82 266 0.82 266 0.82 266 0.82 266 0.82 266 0.82 266 0.82 266 0.82 266 0.82 266 0.82 266 0.82 266 0.82 266 0.82 266 0.82 266 0.82 266 0.82 266 0.82 270 0.81 | 9,85
11,82
10,85
ouz imper
14,03
13,97
12,03
13,91
13,20
y withou
13,50
13,90 | 4,90
5,99
5,45
cional 1
6,76
6,09
6,72
6,64
tintan 1
6,94 | 0,075
0,117
0,085
temped
0,123
0,119
0,111
0,114
0,124
Sonal ted
0,114 | 2,77
6,19
2,58
5,79
4,84
5,12
5,27
4,64
mp46 | 42,98
27,30
23,37
18,98
19,37
20,83
18,06 | 0,62
0,60
0,66
0,65
0,67
1,02 | 2,43
2,66
2,36
2,33
2,45
2,86
1,85 | 0,19
0,23
0,18
0,24
0,32
0,20 | 101
100
100
153
131
134 | 205
279
264
288
272 | 72
103
93
132
124 | 62
74
71
50
66 | 25
45
44
70
65 | 232
314
234
665 | 20
27
28
27 | 116
160
152
188 | 219
400
460
375 | 30
19
25 | 31
92
64 | 26,65
21,14
23,19 | 5,84 | 38,2 | 1 | | MID 2005 S4;
MID 2006 44;
MID 2007 42;
MID 2007 40;
MID 2007 40;
MID 2002 50;
MID 2003 51;
MID 2005 51;
MID 2008 40;
MID 2009 50;
MID 2015 40; | 77 0,59 .61 0,78 .66 0,70 by clay wi 8 .60 0,82 .22 0,82 .26 0,84 .66 0,83 .27 0,81 | 9,85
11,62
10,85
corr inter
14,03
13,97
12,03
13,91
13,20
y withou
13,50
13,90 | 4,93
5,89
5,45
clonal t
6,76
6,86
6,09
6,72
6,66
tistan t
6,86 | 0,075
0,117
0,085
temped
0,123
0,118
0,114
0,124
Sonal ted
0,114 | 6,19
3,58
5,79
4,94
5,12
5,27
4,64
mpet | 27,30
33,37
18,98
19,37
20,83
18,06 | 0,60
0,46
0,85
0,65
0,67
1,02 | 2,66
2,36
2,33
2,45
2,66
1,65 | 0,23
0,18
0,24
0,32
0,20 | 133
109
153
131
134 | 279
264
288
272 | 103
93
132
124 | 34
21
53
64 | 45
44
70
65 | 214
234
665 | 27
26
27 | 160
152
188 | 400
460
275 | 19
25
19 | 92
64 | 21,14
23,19 | 5,84 | 38,2 | | | MID 2006 44, MID 2007 42, MID 2007 42, MID 2007 42, MID 2007 51, MID 2006 51, MID 2008 40, MID 2009 50, MID 2009 50, MID 2009 50, MID 2009 50, MID 2019 60, 2 | ,61 0,78
,96 0,70
by clay wi ti
,04 0,86
,60 0,83
,28 0,82
,06 0,82
,64 0,84
,68 0,88
,63 0,88
,77 0,81 | 11,82
10,85
out inted
14,02
13,97
12,03
13,91
13,20
y without
13,50
13,90 | 5,89
5,65
clonal 1
6,76
6,06
6,09
6,72
6,66
tinten 1
6,86 | 0,117
0,085
tem ped;
0,123
0,119
0,111
0,114
0,124
5oral ter
0,114 | 6,19
3,58
5,79
4,94
5,12
5,27
4,64
mpet | 27,30
33,37
18,98
19,37
20,83
18,06 | 0,60
0,46
0,85
0,65
0,67
1,02 | 2,66
2,36
2,33
2,45
2,66
1,65 | 0,23
0,18
0,24
0,32
0,20 | 133
109
153
131
134 | 279
264
288
272 | 103
93
132
124 | 34
21
53
64 | 45
44
70
65 | 214
234
665 | 27
26
27 | 160
152
188 | 400
460
275 | 19
25
19 | 92
64 | 21,14
23,19 | 5,84 | 38,2 | | | MID 2007 42) Res var e (mar ly MID 2001 50) MID 2002 50; MID 2004 51; MID 2006 51; MID 2006 50; MID 2008 60; MID 2009 50; MID 2009 50; MID 2009 50; MID 2015 64; | ,96 0,70
by clay wi 8
,04 0,86
,60 0,82
,28 0,82
,06 0,84
,64 0,84
; (m ady ch
,68 0,88
,62 0,88
,77 0,91 | 10,85
out inter
14,03
13,97
12,03
13,91
13,20
y withou
13,50
13,90 | 5,45
cional 1
6,76
6,06
6,09
6,72
6,64
tinten 1
6,94 | 0,085
tem ped
0,123
0,119
0,111
0,114
0,124
5onal ter | 5,58
5,79
4,84
5,12
5,27
4,44
mp46 | 18,98
19,37
20,83
18,05 | 0,66
0,65
0,67
1,62 | 2,30
2,45
2,66
1,65 | 0,18
0,24
0,32
0,20 | 109
153
131
124 | 264
268
272 | 93
132
124 | 71
53
64 | 70 | 234
665 | 26
27 | 152 | 460
375 | 25 | 64 | 23,19 | | | | | ino vare juar t
IID 2682 50,
IID 2682 51,
IID 2684 51,
IID 2686 51,
Interactio Wave C
IID 2688 60,
IID 2688 60,
IID 2688 60,
IID 2680 50,
IID 2681 60,
IID 2681 60, | by clay will 10,04 0,86 0,82 0,82 0,82 0,84 0,84 0,86 0,88 0,88 0,88 0,87 0,88 77 0,81 | 14,03
13,97
12,03
13,91
13,20
y withou
13,50
13,90 | 6,76
6,86
6,09
6,72
6,64
tistee 1 | 0,123
0,119
0,111
0,111
0,124
0,124
5onal ter | 5,79
4,94
5,12
5,27
4,44
mp46 | 19,98
19,37
20,83
18,05 | 0,85
0,65
0,67
1,02 | 2,33
2,45
2,86
1,85 | 0,24
0,32
0,20 | 153
131
134 | 288
272 | 132 | S3
64 | 70
66 | 665 | 27 | 188 | 275 | 19 | | | 1,70 | 28,0 | | | IID 2001 50)
IID 2002 50)
IID 2003 51;
IID 2004 51;
IID 2006 51;
IID 2008 60;
IID 2009 50;
IID 2015 68; | ,04 0,86
,60 0,82
,28 0,82
,06 0,82
,64 0,84
; 69 ady ch
,68 0,88
,62 0,88
,77 0,91 | 14,03
13,97
12,03
13,91
13,20
y withou
13,50
13,90 | 6,76
6,00
6,72
6,64
tinten t | 0,123
0,119
0,111
0,114
0,12N
Sonal Ser
0,114 | 4,94
5,12
5,27
4,64
10,946 | 19,37
20,83
18,05 | 0,65 | 2,45
2,86
1,85 | 0,32 | 131 | 272 | 124 | 64 | 65 | | | | | | 74 | 1.76 | | | | | IID 2002 50,
IID 2003 51,
IID 2004 51,
IID 2005 51,
IID 2008 69,
IID 2009 50,
IID 2009 50,
IID 2015 68, | 60 0,83
28 0,82
06 0,82
64 0,84
68 0,88
62 0,88
77 0,81 | 13,97
12,03
13,91
13,20
y withou
13,50
13,90 | 6,96
6,09
6,72
6,64
tinten t | 0,119
0,111
0,114
0,124
Sonal Ser
0,114 | 4,94
5,12
5,27
4,64
10,946 | 19,37
20,83
18,05 | 0,65 | 2,45
2,86
1,85 | 0,32 | 131 | 272 | 124 | 64 | 65 | | | | | | 74 | 1.79 | | | | | IID 2002 51;
IID 2004 51;
IID 2006 51;
Intalia Wave C
IID 2009 50;
IID 2015 68; | 28 0,82
,06 0,82
,64 0,84
;6m ady ch
,68 0,88
,63 0,88
,77 0,91 | 12,03
13,91
13,20
y withou
13,50
13,90 | 6,09
6,72
6,64
tinten t | 0,111
0,114
0,124
Sonal two | 5,12
5,27
4,44
10,940 | 20,83 | 1,02 | 2,86 | 0,20 | 124 | | | | | 413 | 27 | | | | | | | | | | ID 2004 St.) ID 2006 St.) Intallic Wave C ID 2008 60, ID 2009 50, ID 2015 68, | 06 0,82
64 0,84
98 ady ch
68 0,88
63 0,88
77 0,91 | 13,91
13,20
y withou
13,50
13,90 | 6,72
6,64
tinten t
6,94 | 0,114
0,124
Sonal ten
0,114 | 5,27
4,44
1946 | 18,05 | 1,02 | 1,65 | | | | | | | | | | | 24 | 71 | 2,33 | 1,75 | 20,7 | | | IC 2005 60,
Intallic Ware C
IC 2008 60,
IC 2009 60,
IC 2015 68, | 64 0,84
(mady ch
68 0,88
63 0,88
77 0,91 | 13,20
y withou
13,50
13,90 | 6,64
tinten 1
6,94 | 0,124
Sonal ter
0,114 | 4,66
mpeq | | | | | | | | | | 628 | 20 | 189 | 574 | 24 | 64 | 13,08 | 2,02 | 22,4 | | | Metallic Ware C
IID 2008 e9,
IID 2009 50,
IID 2000 50,
IID 2015 e8, | 60 0,88
63 0,88
77 0,91 | 13,50
13,90 | Sisten 1 | Gonal ter
0,114 | mpeq. | 19,46 | 0,78 | | | 127 | 234 | 130 | 62 | 54 | 706 | 28 | 129 | 364 | 19 | 79 | 1,62 | 1,86 | 22,4 | | | IID 2688 69,
IID 2689 50,
IID 2690 50,
IID 2615 68, | 68 0,88
62 0,88
77 0,91 | 13,50 | 6,94 | 0,114 | | | | 2,65 | 0,43 | 123 | 204 | 119 | 70 | 66 | 715 | 27 | 189 | 447 | 20 | 54 | 6,49 | 1,61 | 22,7 | | | IID 2689 50)
IID 2690 50;
IID 2415 48; | 63 0,88
77 0,91 | 13,90 | IID 2000 SO,
IID 2015 48, | 77 0,91 | | 6,98 | | | 20,30 | 0,85 | 2,98 | | 138 | 294 | 112 | 92 | | | 20 | | 305 | 15 | 61 | 13,16 | 1,81 | 29,3 | | | IID 2415 48, | | | | | 5,62 | 19,03 | 0,65 | 1,90 | 0,29 | 160 | 298 | 121 | 87 | 63 | 924 | 27 | 195 | 236 | 21 | 70 | 1,36 | 2,15 | 15,4 | | | | | | 7,22 | 0,120 | | 19,27 | 0,63 | 2,45 | 0,29 | 150 | 292 | 123 | 29 | 71 | 550 | 27 | 183 | 549 | 19 | 72 | 3,30 | 1,62 | 26,0 | | | | | 12,05 | 5,94 | 0,115 | 2,99 | 25,49 | 0,71 | 2,52 | 0,23 | 142 | 294 | 100 | 26 | 54 | 659 | 27 | 177 | 495 | 15 | 72 | 11,62 | 1,81 | 23,9 | MPURIS
Malic War A | total existen | NO. 2004 60 | | 99.54 | 5.00 | 0.020 | | 1.00 | 4.00 | 0.00 | 0.12 | 117 | 190 | 40 | 24 | - | 164 | | 242 | | 60 | 101 | 1.53 | 1.92 | 110 | | | NO 2001 64 | | 21.42 | 4.50 | 0.054 | | 9.76 | 4.50 | 2.41 | | 122 | 130 | - | - | | 163 | | 965 | | | 62 | 2.01 | 1.99 | 25.0 | | | MD 2001 64; | | | | 0,014 | | 1,13 | 0.56 | | 0,08 | 119 | 130 | 29 | 22 | | 122 | | 200 | | 54 | | 0.88 | 2.22 | 19.7 | | | Metallic Ware B | | | | | | | | | | | | | - | | 122 | | | | | | 0,48 | 2,22 | 140 | | | IC 2000 60 | | 20.67 | | 0.007 | 0.91 | 0.60 | 0.00 | 2.66 | 0.00 | 114 | 100 | 91 | - 22 | +22 | 121 | 4 | 969 | 495 | 64 | 114 | 0.89 | 2.21 | 14 | | | MD 2200 68 1 | 99 134 | 19.22 | 519 | 0.006 | 0.70 | 0.79 | 0.50 | 2.50 | 0.15 | 100 | 100 | - 00 | - | - | 140 | | 200 | 955 | 40 | 120 | 1.00 | 212 | 150 | | | MD 2002 64 | | 20.40 | 6.91 | | 0.99 | 0.96 | 0.20 | | 0.20 | - | 111 | 27 | | | 165 | | 965 | | | 100 | 1.04 | 2.07 | 18.5 | | | NO 2000 64 | | 20.42 | 4.95 | 0.000 | 0.99 | 1.00 | | 4.45 | | 100 | 115 | 97 | | | 193 | | 200 | 506 | 50 | 105 | 1.25 | 2.09 | 17.8 | | | Autobio Ware C | | | | | | | | | | | | | - | _ | | | | | - | | | | | | | inue D1 | MD 2002 - 50 | 92 111 | 10.12 | 9.59 | 0.164 | 4.90 | 9.00 | 0.37 | 2.50 | 0.10 | 102 | 922 | *** | 60 | - 01 | 100 | | 127 | 422 | 22 | - | 1.50 | 2.04 | 184 | | | imus D2 | | | | | | | | | | - | - | | | | - | | | - | - | - | | | | | | MD 2701 SR: | 31 103 | 16.21 | 9.99 | 0.159 | 5.77 | 5.11 | 1.82 | 2.12 | 0.25 | 102 | 462 | 560 | 104 | 40 | 202 | 99 | 150 | 995 | 20 | 71 | 2.52 | 5.77 | 27.7 | | | MD 2002 50 | | 16.19 | 9.09 | 0.173 | | 6.00 | 1.60 | | 0.94 | 104 | 440 | 999 | 100 | | 200 | | 145 | 216 | 95 | 64 | 1.94 | 5.71 | 22.8 | | | ine Ware | | | | | | | - | | | | | | _ | - | | | | | - | | | | | | | | 84 039 | 15.83 | 7.92 | 0.129 | 4.79 | 9.25 | 1.50 | 2.40 | 0.00 | 145 | 962 | +22 | 60 | 79 | 215 | 4 | 185 | *** | 24 | 68 | 3.28 | 5.71 | 22.8 | | ### Conclusions Fine Ware and boal (calcareous) Metalic Ware were not tempered and compared with the tanrur, most probably were produced after removing large particles of carbonate aggregates. Ceranip properties (apparent density, open porosity, water absorption) of these two types of ware mostly do not reach that of non-calcareous Metallic Ware. Original fitting temperatures vary strongly between 650°C and 1050°C. We distinguish four groups of North-Mesopotamian Metallic Wares • Metallic Wares A and B (or non-aclearoous North-Mesopotamian Stone ware) corresponds to the chemical groups A and B after Schneider 1989. The two groups with different but yet urknown provenances cannot be distinguisted without chemical analysis. Properties of the sherds from Tell Arbid are typical for this pottery. They are dense and not permeable for water (except sample MD2591) After removing the sufface layers, the samples are more permeable. This pottery is not suited for cooking after thermal shock some samples fell control. ### imports - metallic Wares C (calcareous North-Mesopotamian Metallic Wares) is made at various sites. Groups can best distinguished by thin section studies or McR-analysis. Metallic Wares C is defined as fring to a yellow-greenish colour at temperatures exceeding 1110°C in an oxidizing atmosphere. In few cases, samples cannot be distinguished macrosopically from non-calcareous Metallic Wares. Besides the four samples most probably local to Tell Arbid, we analysed two samples with a differing composition thus indicating imports at Tell Arbid. - Metallic Ware D (low caldium, high magnesium, chromium and nickel) is made at various sites. It includes most of the samples of Metallic ware found at Lidar Höyük ("Lidar-group", Schneider 1988) Groups have to be distinguished by chemical analysis with additional thin section studies or MGR-analysis. Metallic Wares D is defined as firing to a brown colour at temperatures exceeding 1110°C in an oxidizing atmosphere. Sherds of this non-calcaneous ware mostly are red. Ceramic and functional properties vary largely. M. Dasskienicz, A. Smogorzwska, Brisf report on chemical analysis of Metallic Ware from Tell Arbid with special reference to "Storage" Metallic Ware, Orien Express 1, 1999, 25-27.